Categories
Notable Grants

Research Insights

CAREER: New Pericyclic Methodologies for the Convergent Synthesis of Complex Ring Systems

With the support of the Chemical Synthesis program in the Division of Chemistry, Christopher Newton of the University of Georgia is designing novel molecular “building blocks” that improve the reactivity and versatility of molecular addition reactions. These addition reactions enable the rapid construction of complex organic molecules through the joining of two simpler fragments and this research aims to address long-standing challenges in the field that have limited its applications. The targeted reactions are expected to lead to a diverse set of cyclic structures containing carbon, oxygen, and nitrogen atoms. Detailed studies of the mechanisms underpinning these transformations will also be undertaken, helping to facilitate future discoveries. The outcomes of this research stand to have broad scientific and societal impacts including in the pharmaceutical, material, and agrochemical industries. The funded research will also support the training of a diverse body of undergraduate and graduate students in state-of-the-art chemistry techniques, helping to strengthen the future STEM (science, technology, engineering and mathematics) workforce in the United States. In addition, Dr. Newton and his team will work to create and disseminate free, open-access chemistry educational tools to reduce barriers and broaden engagement in STEM. Finally, this award will support an outreach program, in collaboration with local high school teachers, to provide hands-on laboratory experience and career guidance to the greater Athens, GA community. The overarching goal of the research program under the guidance of Christopher Newton is to develop novel, pericyclic-based strategies for the convergent synthesis of high-value complex ring systems. This study aims to tailor the reactivity of cycloaddition reactions, including the venerable Diels-Alder reaction, through the use of atypical, high oxidation state building blocks. The joining of these novel fragments leads to products of increased complexity and functionality when compared to current state-of-the-art approaches. The research plan has three distinct objectives: (i) development of the first general family of cross-coupling active Diels-Alder dienes, (ii) a one-step Diels-Alder/ring expansion route to 7- and 8-membered hetero- and carbocyclic motifs, and (iii) development of a novel, highly reactive class of aza-dienophiles. Success in these endeavors is anticipated to provide efficient access to a plethora of highly functionalized, biologically active polycyclic molecules, while also furthering fundamental understanding of structure and reactivity in this important area of reaction modality.

Funder: National Science Foundation

Amount: $770,000

PI: Christopher Newton, Franklin College of Arts and Sciences, Department of Chemistry