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Abstract

Methods for choosing an appropriate sample size in animal experiments have

received much attention in the statistical and biological literature. Due to ethical

constraints the number of animals used is always reduced where possible.

However, as the number of animals decreases so the risk of obtaining inconclusive

results increases. By using a more efficient experimental design we can, for a given

number of animals, reduce this risk. In this paper two popular cases are considered,

where planned comparisons are made to compare treatments back to control and

when researchers plan to make all pairwise comparisons. By using theoretical and

empirical techniques we show that for studies where all pairwise comparisons are

made the traditional balanced design, as suggested in the literature, maximises

sensitivity. For studies that involve planned comparisons of the treatment groups

back to the control group, which are inherently more sensitive due to the reduced

multiple testing burden, the sensitivity is maximised by increasing the number of

animals in the control group while decreasing the number in the treated groups.

Introduction

The 3R’s, Replacement, Reduction and Refinement, introduced as a framework

for achieving the most humane treatment of experimental animals, has been

widely accepted as a prerequisite for a successful animal experiment [1]. Attention

on the refinement element of the framework has been growing in recent years.

Refinement refers to improvements to scientific procedures and husbandry which

minimise actual or potential pain, suffering, distress or lasting harm and/or

improve animal welfare in situations where the use of animals is unavoidable. In

2009, Kilkenny et al. published a systematic review of published papers involving

in vivo experiments and highlighted that many published experiments did not use
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the most appropriate experimental design. For example, in the survey only 62% of

experiments that should have employed a factorial design had in fact done so [2].

Experimental design and statistical analysis fall under the refinement element of

the 3R’s as they reduce further experimentation and ensure that the animals used

fulfil the goals of the experiment. This has led to the publication of the Animal

Research: Reporting In Vivo Experiments (ARRIVE) guidelines [3], a checklist

that aims to embed good practice in the experimentation process. The impact of

poor experimental design can be profound, as shown by a systematic study that

found a lack of concordance between animal experiments and clinical trials [4].

The authors concluded that majority of the animal studies were of poor

methodological quality. In practice though poor design and analysis is not

restricted to animal experimentation and is thought to be endemic throughout

scientific research [5, 6].

In science and statistics, validity is the extent to which a conclusion or

measurement is reliable and corresponds accurately to the real world. The validity

of an experiment can be evaluated in many ways. For example, the conclusion

validity is the degree to which conclusions we reach about our data are reasonable

[7] and relates to the experiment’s ability to assess the relationship. The majority

of studies involving animals use statistical hypothesis testing, where a p-value is

calculated to assess whether the null hypothesis (of no effect) can be rejected and

hence the alternative hypothesis (the effect you are trying to prove) accepted.

With the use of inferential hypothesis testing, there is potential to conclude there

is an effect when in fact there is none – a false positive (type I error). Conversely,

there is potential to conclude there is not an effect when in fact there is one (type

II error). When considering the type II error rate it is often more useful to

consider the statistical power (1{b, where b is the probability of a type II error

occurring). The statistical power is the probability (or chance) of achieving a

statistically significant result when conducting a study given that, in reality, there

is a real effect [8]. In practice a power in excess of 80% is usually considered

acceptable. With experiments involving animals it is critical to ensure that the

experiment has sufficient power so that not only real effects are detected, but also

that the experiment is not over-resourced such that animals are wasted [9].

Frequently, animal researchers conduct experiments that involve multiple

treatments and a common control. For example, a survey of recent PLoS ONE

papers identified an R&D drug study involving multiple different treatments

versus a vehicle control [10], a study comparing high cholesterol diets to a low

cholesterol diet [11] and a study comparing responses at later time points to a

baseline group [12]. This type of study design is also commonly used in toxicology

and safety assessment where studies are typically performed so that they can

compare increasing doses of a treatment back to a control group. For example,

Lee et al. [13] describe a repeated oral dose toxicity study in rats to compare three

doses of KMS88009 back to a vehicle control. In these experiments comparisons

back to the control will be the only comparisons that are of interest, regardless of

the experimental results. It is important to note that the researcher plans which

comparisons that wish to make in advance – they are examples of so-called
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planned comparisons [14], as opposed to general ‘post hoc testing’ which involves

making all pairwise comparisons). Planned comparisons are beneficial for two

reasons. Firstly, the decision regarding which tests to perform is made before the

data is collected and hence is not influenced by the observed results. In theory, this

should reduce the risk of inadvertently finding false positive results in a ‘data-

trawling’ exercise. Secondly, planned comparisons increase the sensitivity of the

experiment as it reduces the multiple testing burden. The multiple testing burden

arises because the chance of finding a false positive, for a given significance

threshold, accumulates with each statistical test conducted. If all pairwise

comparisons are performed, for example using an LSD (Least Significant

difference) test [8], then there is an increased risk of finding false positives. To

manage this risk a more stringent threshold is applied; by making a multiple

comparison adjustment to the LSD p-values. Consider the scenario with one

control group and three treatments. If all groups are compared then the post-hoc

testing would involve six separate pairwise statistical comparisons. However, if

planned comparisons of treatments back to control are performed then this

corresponds to only three separate statistical comparisons and the threshold

adjustment would be less. In this paper, we shall consider the implications on the

choice of design when the researcher knows in advance which comparisons they

wish to make.

When constructing experimental designs that involve a number of treatment

groups and a control group, interest rightly focuses on the sample size that is

required in each of the experimental (treatment and control) groups. It appears to

be standard practice to assign the same number of animals to each of the

experimental groups (the so-called ‘balanced’ designs). Such practice is perhaps

encouraged by sample size calculation software, where typically one sample size is

recommended across all groups [15, 16]. The statistical test applied also influences

the sample size required. A common approach used to analyse data generated

from these experiments, assuming the parametric assumptions hold, is to

compare the treatment group means to the control group mean, using either t-

tests, Analysis of Variance followed by Dunnett’s test or applying a multiple

comparison adjustment to the LSD p-values. It is therefore common practice to

perform a sample size calculation under the assumption that the statistical analysis

will be performed using one of these tests [17].

In this paper, we shall use optimal design theory to investigate the effects of

varying the replication of the experimental groups. We shall assume that the data

will be analysed using either multiple t-tests or Analysis of Variance followed by a

suitable multiple comparison procedure. Crucially we differentiate between the

experimental situations where the researcher only plans to compare the

treatments back to control and when they plan to make all pairwise comparisons.

We will focus on the former case, and highlight how different experimental

designs result in different levels of statistical power.
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Methods

Two approaches are considered in this paper to investigate the effect of varying

the control group replication; a theoretical investigation and a power comparison.

Theoretical approach to maximising sensitivity

For the theoretical investigation, we need to make a few assumptions. While

restrictive, many animal experiments satisfy these assumptions. We assume that:

1. The researcher conducts an experiment to either (a) compare t treatments to

a single control or (b) make all possible pairwise comparisons between the

experimental groups. The experimental design therefore involves tz1
experimental groups.

2. A total of ntotal animals are used in the experiment and they are allocated at

random to the tz1 experimental groups.

3. The replication in the t treatment groups is the same (nt).

4. The replication in the control group is nc.

5. The variability of the responses is the same across all experimental groups. In

practice the response may require a transformation in order to satisfy this

condition.

6. The parametric assumptions hold (for example, the responses are numerical,

independent, continuous and the residuals are normally distributed) and

hence a parametric test, such as the t-test or Analysis of Variance followed by

pairwise comparisons, will be used to compare the experimental groups.

By considering the predicted standard error of the estimates of the comparisons

of interest, when using a given experimental design, it is possible to compare and

contrast different designs. The more efficient the design, the smaller the predicted

standard errors will be and hence the statistical tests will be more sensitive. For a

given total number of animals, we use mathematical arguments (see S1 Derivations

for more details) to investigate how varying the replication of the control group

influences these standard errors.

Power analysis assessment

To highlight the practical implications of using different experimental designs, we

investigate the statistical power that can be achieved when comparing all

treatments back to a single common control using planned comparisons. The tests

within this manuscript are not adjusted for multiplicity, as the adjustment needed

varies between the analysis scenarios and adds complexity to the analysis. The

absolute level of statistical power is not of direct interest; rather we are interested

in investigating how varying the experimental design (control group replication)

influences its statistical power.

For a given level of variability (s2), a difference between the two group means

(d), a significance level of 5% and sample sizes (n1 and n2), the power (P) of a two-

sided test that is not adjusted for multiplicity is given by
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P~1{ Yntot{(tz1) t(0:05,ntot{(tz1)) {
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where Y() is the cumulative density function (CDF) of the t distribution with

ntot{(tz1) degrees of freedom and s2 is an estimate of the variance [14]. The

derivation of this formula is given in S2 Derivations.

Using (1) we investigate the power that can be achieved in various real-life

situations. For convenience the total number of animals included in each situation

is selected so that
ffiffi
t
p

|n (where t is the number of treatment groups and n is the

replication in the treatment groups) is approximately an integer.

Results

Theoretical approach to maximising sensitivity

Using the mathematical arguments given in S1 Derivations we can, for a variety of

scenarios, assess the optimal replication in the control group to achieve for

maximum sensitivity. We assume that the researcher is running an experiment

that satisfies the five conditions discussed in the methods.

Scenario 1

Assume that the only comparisons the researcher plans to make involve

comparing the treatment groups back to the control group. For a given total

number of animals (ntotal), if there are nt animals in each of the t treatment groups

and nc animals in the control group, then let there be q more animals in the

control group compared to the treated groups, i.e.

nc~q|nt:

and

ntotal~t|ntznc~(tzq)|nt:

Note if qw1 then there are more animals in the control group compared to the

treated groups and if qv1 then there are fewer animals in the control group

compared to the treated groups.

The estimates of the pairwise comparisons of interest are as precise as possible

if:

q~
ffiffi
t
p
:

In other words, the number of animals in the control group should be
ffiffi
t
p

times

the number in the treatment groups. So in an experiment involving comparing

four treatment groups back to a control group, then twice as many animals should

be allocated to the control group than are allocated to the treatment groups.
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Scenario 2

Assume that the researcher is interested in making all possible pairwise

comparisons between the tz1 experimental groups. It turns out that these

comparisons are estimated as precisely as possible if:

q~1:

In other words, as expected by symmetry, as all groups are involved in the same

number of comparisons, the same number of animals should be allocated to each

of the experimental groups (treatment groups and the control group).

From consideration of these two scenarios, we can see the optimal design

depends on the goal of the experiment. With the defined planned comparisons in

Scenario 1, an unbalanced design with more animals allocated to the control

group results in comparisons that are estimated more precisely. This gain in

sensitivity is at the expense of treatment comparisons that the researcher does not

plan to make. In other words, the pairwise comparisons of interest are more

precise, everything else being equal, if one design is employed when compared to

another. From a less mathematical point of view, these results make sense as the

control group is used more often than the other treatment means, and hence it is

important to have a precise estimate of the control group mean.

Power analysis assessment for Scenario 1

We shall now consider Scenario 1 in more detail. The previous analysis identified

the optimal design to maximise sensitivity and we now focus on quantifying the

impact on the statistical power of the various designs.

Using equation (1), the statistical power of various levels of replication of the

control group was investigated by assessing various designs when the size of the

biological effect increases for a defined amount of biological variability (Table 1

and Fig. 1) and when the size of the biological effect is fixed but the biological

variation increases (Table 2 and Fig. 2). Three control group replication strategies

are considered: when the replication in the control group is (i)
ffiffi
t
p

more than the

treated groups - the theoretically optimal solution, (ii) equal to the replication in

the treated groups and (iii) less than the replication in the treated groups. While

(i) has been shown to be the optimal solution, (ii) and (iii) are commonly applied

in practice and hence it is of interest to consider how these designs compare to the

theoretically optimal design. To give context, the biological effect being tested for

each calculation has been presented as a standardised effect size (Cohen’s d or Z

statistic) where the biological effect is scaled relative to the biological variability

(i.e. 1 equals a differences equivalent to one unit of variability) [18].

From Tables 1 and 2 it can be seen that, in the situations considered, a gain in

statistical power of between 0.16% and 7.02% (with a median of 3.12%) can be

achieved when using the mathematically optimal replication of controls,

compared to replicating all groups equally. This benefit is reduced if the statistical

power obtained when using both designs approaches 100%. While such
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improvements are perhaps of marginal practical importance, especially in suitably

powered experiments, it is still the case that a slight change to the experimental

design can result in more sensitive statistical tests without increasing the total

number of animals used.

Perhaps more strikingly, from Table 1 and 2 it can be seen that there is a

significant drop in statistical power if the number of animals in the control group

is less than the number in the treatment groups. For example, if a design is

required to compare four treatments with a control, the size of biologically

relevant effect is 2 and the variability of the responses is 2.25, then a 30% increase

in power can be achieved if the optimal replication of animals is used, when

compared to a design where there are fewer animals in the control group

compared to the treated groups.

Conclusions

A review of the literature seems to imply the researcher should use a balanced

design with the same number of animals allocated to each experimental group.

For example, Ruxton and Colegrave [19] state ‘‘Always aim to balance your

experiment, unless you have a very good reason not to’’. In many statistical texts

the sample size calculation is performed when the experimental design consists of

only two groups. In this case the balanced design is usually a sensible choice.

Table 1. Statistical power of various levels of replication of the control group as the biological effect increases.

Number of
treatment
groups

Control Group
Replication
Strategy{

Treatment
group
replication

Control group
replication

Total number of
animals

Difference between the treatment and control
groups (Absolute size, Cohen’s d )

(nt) (q|nt) (ntot) (1, 0.67) (2, 1.33) (3, 2)

3 (i) 6 10 28 22.47% 69.70% 95.91%

(ii) 7 7 28 21.21% 66.63% 94.75%

(iii) 8 4a 28 17.05% 54.64% 88.05%

4 (i) 5 10 30 20.47% 64.60% 93.87%

(ii) 6 6 30 18.80% 59.92% 91.46%

(iii) 7 2b 30 11.60% 34.89% 66.78%

5 (i) 10 22 72 40.24% 93.08% 99.91%

(ii) 12 12 72 35.89% 89.58% 99.75%

(iii) 13 7c 72 28.40% 80.03% 98.68%

6 (i) 10 24 84 41.34% 93.76% 99.93%

(ii) 12 12 84 36.07% 89.70% 99.76%

(iii) 13 6d 84 26.20% 76.03% 97.87%

The variability of the responses is fixed at 2.25. Three strategies for selecting the size of the control group were considered: (i) Optimal, according to the
theoretical derivation, (ii) Equal to the treatment groups and (iii) Less than, where the control group replication is less than the treatment groups.
{: for control group replication strategy (i) q is approximately

ffiffi
t
p

, (ii) q~1 and (iii) qv1,
specifically: a: q~0:5, b: q~0:29, c: q~0:54 and d: q~0:46.

doi:10.1371/journal.pone.0114872.t001
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Unfortunately designs used in practice are rarely so straightforward, and hence the

orthodox strategy may not always be appropriate.

In this paper we have shown the benefit that can be gained from using an

experimental design that has been constructed to favour the comparisons that the

researcher plans to make. Focusing on the comparisons of interest increases

sensitivity as it reduces the adjustment that is required to manage the multiple

testing burden (i.e. reduce the false positive risk). In the case considered in this

paper, where the researcher wishes to compare t treatments to a control, the

design should be selected so that the number of animals in the control group is
ffiffi
t
p

times the number in the treated groups. It has been shown that such a design

performs better than the commonly used strategy of equally replicating across the

treatment and control groups. While beyond the scope of this paper, a similar

approach can be used for the more complicated experimental designs. For

example, the choice of block or cross-over design can influence the reliability of

the treatment comparisons.

Fig. 1. Statistical power of various levels of replication of the control group as the biological effect increases. The variability of the responses is fixed
at 2.25. Three strategies for selecting the size of the control group were considered: (i) Optimal, according to the theoretical derivation, (ii) Equal to the
treatment groups and (iii) Less than, where the control group replication is less than the treatment groups.

doi:10.1371/journal.pone.0114872.g001

Using a Common Control

PLOS ONE | DOI:10.1371/journal.pone.0114872 December 11, 2014 8 / 12



Another strategy that researchers may follow when designing their experiments

is to reduce the number of animals in the control group compared to the

treatment groups. This approach is usually taken because the researcher has access

to historical control data and feels that this knowledge implies fewer concurrent

controls are needed. There has been much written about the benefit of using

historical control data when assessing the effect of treatments [20] though it does

not replace concurrent controls. Prior knowledge, perhaps obtained from a

historical control database, can also be incorporated into the statistical analysis

using a Bayesian analysis paradigm. This approach has been successfully applied in

clinical research, although such studies usually involve comparing a single

treatment to a control or placebo [21]. While there are certain benefits to

comparing multiple treatments to a historical control group, this work highlights

that a study with both concurrent and historic controls does not necessarily imply

that fewer animals can be included in a concurrent control. When treatments are

compared using the popular statistical analysis approaches discussed in the

methods section, we have demonstrated that having more animals in the

treatment groups, compared to the control group, can lead to a significant

reduction in statistical power regardless of the benefits of using historical control

information.

In this paper we have assumed that the variability is the same in all

experimental groups. In practice this assumption may not hold. For example, in

biological responses it is common for the variability to increase with the size of the

Table 2. Statistical power of various levels of replication of the control group as the variance increases.

Number of
treatment groups

Control Group
Replication Strategy{

Treatment group
replication

Control group
replication Total number of animals

Variability of the responses
(Variance, Cohen’s d )

(nt) (q|nt) (ntot)
(2,
1.41) (4,1) (9, 0.67)

3 (i) 6 10 28 74.83% 45.15% 22.47%

(ii) 7 7 28 71.85% 42.59% 21.21%

(iii) 8 4a 28 59.76% 33.67% 17.05%

4 (i) 5 10 30 69.85% 41.00% 20.47%

(ii) 6 6 30 65.16% 37.45% 18.80%

(iii) 7 2b 30 38.64% 21.31% 11.60%

5 (i) 10 22 72 95.42% 73.33% 40.24%

(ii) 12 12 72 92.66% 67.42% 35.89%

(iii) 13 7c 72 84.44% 55.43% 28.40%

6 (i) 10 24 84 95.94% 74.63% 41.34%

(ii) 12 12 84 92.76% 67.61% 36.07%

(iii) 13 6d 84 80.77% 51.40% 26.20%

The difference between the treatment and control groups is fixed at 2. Three strategies for selecting the size of the control group were considered: (i)
Optimal, according to the theoretical derivation, (ii) Equal to the treatment groups and (iii) Less than, where the control group replication is less than the
treatment groups.
{: for control group replication strategy (i) q is approximately

ffiffi
t
p

, (ii) q~1 and (iii) qv1,
specifically: a: q~0:5, b: q~0:29, c: q~0:54 and d: q~0:46.

doi:10.1371/journal.pone.0114872.t002
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response. Furthermore, responses that are bounded (e.g. percentages which

cannot go below 0 or above 100) tend to be less variable as a boundary is

approached. In such cases, there are statistical analysis strategies that can be

applied, but they are beyond the scope of this paper. An alternative strategy,

commonly recommended [8, 14, 22], is to investigate the use of non-linear data

transformations to ‘‘correct’’ the data which then allow application of the

methods discussed within this paper. For example, the arcsine transformation for

percentage data, square root transformation for count data and log transforma-

tion if the variability increases as the response increases.

The arguments presented in this paper, also assume that any attrition due to

experimental procedures is expected to be the same across all groups. If the

researcher believes, for example, that they are likely to lose more animals in the

treated groups, then they may wish to adjust the initial sample sizes so that the

sample sizes achieved at the end of the study should result in a design that is close

to the optimal design.

Fig. 2. Statistical power of various levels of replication of the control group as the variability increases. The difference between the treatment and
control groups is fixed at 2. Three strategies for selecting the size of the control group were considered: (i) Optimal, according to the theoretical derivation, (ii)
Equal to the treatment groups and (iii) Less than, where the control group replication is less than the treatment groups.

doi:10.1371/journal.pone.0114872.g002
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In practice, if the experiment is to be successful, many considerations should be

taken into account when constructing a design. Issues such as practical constraints

on the experimental material, financial pressures and ethical issues should be

taken into account alongside optimal statistical design theory. In this paper we

have aimed to highlight what a theoretically optimal experimental design, all

things being equal, would be. The researcher should use this knowledge, in

conjunction with other constraints, when planning their experiment.

Supporting Information

S1 Derivations. Determining the optimum control group replication.

doi:10.1371/journal.pone.0114872.s001 (DOCX)

S2 Derivations. Determining the statistical power.

doi:10.1371/journal.pone.0114872.s002 (DOCX)
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